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What is Spatial Analysis 3D? 
 
Spatial Analysis 3D is a user-friendly, graphical user interface (GUI) that allows 
statistical and visual manipulations of real and simulated three-dimensional spatial point 
patterns.  Examples of the types of analyses performed include those derived from the 
Delaunay tessellation associated with such spatial point patterns, including nearest 
neighbor and Voronoi domain analysis, and those associated with the correlation of such 
point patterns, including autocorrelation analysis and its derived density recovery profile 
as well as the related K, F, and G-functions. The stimulus for the development of Spatial 
Analysis 3D has been the study of neuronal positioning within the central nervous 
system, but many other applications in science, engineering, statistics, and mathematics 
should benefit from this suite of programs. 
 

Why MATLAB? 
 
MATLAB® is a high-performance language for technical computing.  The easy-to-use 
environment makes it an ideal platform for these types of simulations, computations, and 
visual presentation of 3D data. 
 
One attractive feature of MATLAB is that the basic element is an array that does not 
require dimensioning.  MATLAB also comes with an extensive set of plotting functions.  
Where an entire C program would be required to plot a 3-dimensional surface plot, this 
can be accomplished in one line in MATLAB. 
 
MATLAB has the ability to call your own C or Fortran subroutines as if they were built-
in functions. MATLAB callable C and Fortran programs are referred to as MEX-files. 
MEX-files are dynamically linked subroutines that the MATLAB interpreter can 
automatically load and execute.  This means large pre-existing C and Fortran programs 
can be called from MATLAB without having to be rewritten as MATLAB M-files.  
Furthermore, bottleneck computations (usually for-loops) that do not run fast enough in 
MATLAB can be recoded in C or Fortran for efficiency. 
 
MATLAB comes with a full set of online and printed documentation, including searches 
where the function of interest is unknown.  Because of these features, MATLAB has 
become the tool of choice for high-productivity research and analysis. 
 
Probably the most important feature of MATLAB is its availability.  MATLAB is 
available for a variety of different platforms including Sun, SGI, Windows 
95/NT/2000/XP, DEC Alpha, Mac, Linux, and UNIX. 
 
It is important to note, however, that Spatial Analysis 3D was written for the Windows 
operating system.  Unknown behavior may occur when using other operating systems, 
and the examples illustrated in Chapter 3 may look different. 
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This chapter provides technical information on the simulation methods and algorithms 
used in the Spatial Analysis 3D program.  The material in this chapter is not essential for 
understanding the use of the program. 
 

Spatial Analysis 3D 
 

Spatial Analysis 3D was born out of a collaborative research effort between Drs. 
Benjamin Reese, Mary Raven, and Dan Lofgreen at the University of California at Santa 
Barbara and Dr. Stephen Eglen at the University of Cambridge.  It has been supported by 
a grant from the National Institute of Mental Health through the Neurotechnology 
Research, Development and Enhancement Program.  It grew out of our efforts to quantify 
the regularity and simulate the patterning found in distributions of nerve cells across the 
retina, a structure in the central nervous system where uniformity in nerve cell spacing 
plays a critical role in retinal function. 
 
Retinal nerve cells are distributed as non-random arrays across the retinal surface, and 
this regularity is fundamental to retinal organization, ensuring a uniform distribution of 
labor in processing the visual image across global variations in cellular density.  Near 
neighbor analysis has been the classic means to assess the regularity in such retinal 
arrays, but Voronoi-based analyses have recently come into favor for describing the two-
dimensional patterning in retinal mosaics.  Autocorrelation analysis and modeling studies 
have established that the patterning in these mosaics is largely achieved by mechanisms 
acting during development that prohibit like-type cells from being positioned in close 
proximity to one another, being independent of the patterning present in other nerve cell 
types.  It became apparent that these tools could be extended to the 3rd dimension in 
order to ask comparable questions elsewhere in the brain, and hence the birth of Spatial 
Analysis 3D:  by inputting a list of x, y, z coordinates describing the spatial positioning of 
a population of neurons in three dimensions, one can test whether such cells are randomly 
distributed within the field, or whether there is any spatial patterning, regularity, minimal 
spacing, clustering or anisotropy in their distribution. 
 

Delaunay Tessellation and its Derivatives 
 
Given a set of data points in 2D, the Delaunay triangulation is defined as a set of lines 
(the Delaunay segments) connecting each point to its natural neighbors. A single point 
will have some variable number of natural neighbors, one of them being the shortest (or 
nearest) neighbor.  In 3D, such a Delaunay tessellation is made up by a set of tetrahedra 
defined by the population of natural neighbors.  Any given point will again have some 
variable number of neighbors, with each set of three neighbors and the point in question 
defining a single Delaunay tetrahedron.  The population of nearest neighbor distances, 
like the population of all Delaunay segments or the population of Delaunay triangles in 
2D (or tetrahedra in 3D) is a means to describe the spatial relationship between such 
elements in a population. 
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An alternative means of tessellating 2D or 3D space is by dividing it up into the Voronoi 
domains associated with those points.  Voronoi tessellation describes the parcellation of 
space by proximity to each point – all points in the 2D or 3D field closer to a given point 
than to any of its neighbors defines the Voronoi domain of that point.  In each case, the 
interconnecting points in the Delaunay tessellation define the Voronoi neighbors, and so 
the circle circumscribing each Delaunay triangle (or the sphere circumscribing each 
tetrahedron) defines a vertex of neighboring Voronoi polygons. 
 
The algorithms used to generate the Delaunay tessellations are based on Qhull1,2.  For 
more in-depth information regarding Qhull, visit http://www.qhull.org/. 
 
 

Voronoi Domain Direction Vectors 
 
In the previous section, we discussed the parcellation of space using a Voronoi 
tessellation.  The result of the tessellation is a set of Voronoi domains, closed 
polyhedrons formed with triangular facets.  In some circumstances, the Voronoi domains 
may display anisotropies that are consistent across the population.  We developed a novel 
vectoring system that can be used to describe such bias in the shape of each Voronoi 
domain.  We call these the Voronoi domain direction vectors. 
 
To generate a direction vector, we consider the contribution of each facet to the whole 
Voronoi domain.  We generate a vector for each facet by first drawing a vector to each 
vertex of the facet from the cell.  The three vectors are then summed together to give a 
single direction vector for that particular facet.  The vector for that facet is then 
multiplied by the facet area, effectively weighing each facet’s direction vector.  Direction 
vectors for all of the facets can then be summed to give a single direction vector for the 
Voronoi domain itself.  The Voronoi direction vector is then normalized if its magnitude 
is greater than 1.  The diagram on the following page outlines how a direction vector for 
one facet is calculated.  
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Consider a Voronoi domain with N facets.  For each of those facets, there are three points 
that define it.  The Voronoi direction vector can then be defined as 
 
 

∑ ∑
= =

=
N

n i

n
in vAV

1

3

1

 

 
where An is the area of facet n and n

iv  is the vector to each facet point from the central 
point. 
 
There are situations with regularly spaced data (though rarely achieved in biological 
specimens) where the Voronoi domains will be symmetrical.  In these cases, the direction 
vector for one facet may exactly cancel the direction vector of the opposing facet (e.g. <-
1, -1, -1> and <1, 1, 1>).  For the case where the Voronoi domain is a rectangular prism, 
the resulting direction vector for the domain will be <0, 0, 0>.  To indicate that there is an 
elongated direction in these types of cases, a second algorithm is applied.   When the 
direction vector is weighted by the facet area, the absolute value of the vector is used.  
This insures that no vector can cancel another.  It also provides an order of magnitude for 
each independent direction.  The resulting vector is then normalized by its largest 
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direction and then the smallest direction is subtracted off.  An example of this calculation 
is given on the following page. 

∑ ∑
= =

=
N

n i

n
in vAV

1

3

1

 

 
Note that the magnitude of each vector component is used in this algorithm.  The vector 
above is then normalized by the algorithm described above. 
 
An example of the normalization algorithm is given below. 
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The algorithm used above gives a relative value for each direction.  In this example, the 
y-direction has the least influence and the x-direction has the most influence.   
 

Spatial Correlation Analysis and its Derivatives  
 
The spatial plot of the position of each point in a field relative to every other point is the 
autocorrelation and is another means for describing the patterning associated with a set of 
points.  For a population of points that approximates a lattice, the periodicity in the 
population will reinforce itself and become more readily apparent in the autocorrelogram.  
The autocorrelogram also readily discriminates distributions of points that display a 
tendency for clustering, or for anti-clustering (avoiding being positioned close to one 
another).  One means of displaying the data derived from an autocorrelogram is to plot 
the density recovery profile (DRP), a histogram of the average density of cells in the 
correlogram as a function of eccentricity from the origin.  For more detailed information 
regarding the DRP, see Rodieck3.  For a random distribution of points, the DRP shows an 
invariant density as a function of distance from the origin.  Clustered populations show 
elevated densities near the origin, while anti-clustered populations show a reduction in 
density at the origin, climbing to some average (recovered) density as a function of 
eccentricity.  The size of the region within which the probability of finding another point 
is lower than the average density can be estimated as the “effective radius”, defined 
originally by Rodieck in 2D as the radius of a cylinder of identical volume to that defined 
by the “empty” region at the origin.  The size of the bin-width in the DRP is constrained 
by both sample size and density, leading some to prefer to compute the K-function 
instead.  Below we derive the statistics used in the 3D autocorrelation analysis. 
 

V volume of the region containing the reference points 
N number of points in the region 
D density of the points in the region equal to N/V 
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i index into each spherical shell 1,2,… (or the corresponding 
bin in the density recovery profile) 

ΔVi volume of the spherical shell i 
Δr width of each shell (and bin width of the density recovery 

profile) 
ni measured number of points in spherical shell i 
λi expected number of points in spherical shell, assuming a 

random distribution 
di density measure for the density recovery profile 
 

The volume of a spherical shell can be shown to be 
 

( )1333/4 23 +−Δ=Δ iirVi π  
 
The expected number of points in a spherical shell is the product of the expected number 
to be found in the shell for each reference point times the number of reference points in 
the sample region N.  If we have a random distribution, then the expected number in the 
shell for each reference point is the density of points D times the volume of the shell ΔVi. 
 

ii VNDΔ=λ  
Let  
 

i

i
i VN

n
d

Δ
=  

 
To calculate effective radius of the dead space we first need to look at the number of 
points that are “missing” near the origin.  We do this by defining a flux for each bin 
which is the spherical shell volume for each bin times its height relative to the expected 
density in the sample space: 
 

( )iii dDVN −Δ=Δ  
 

Substitution using the equations above 
 

N
n

N ii
i

−
=Δ
λ  

so that 
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N
N

λ

λ
1
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Now Ne represents the total number of points in the dead space.  If we choose to think of 
this dead space in terms of a linear measurement, we can compare it to a spherical 
volume with an effective radius, reff.  By definition we have 
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DrN effe
33/4 ⋅⋅= π  

so that 
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If we have too few points, or the bins are too thin and thus capture too few points, the 
measure of effective radius can be unreliable.  For a random (Poisson) distribution, the 
variance in the number of points in a given area is equal to the mean number λ. 
 

λσ =2  
with substitution 

VND

VND

Δ=

Δ=

σ

σ 2

 

 
This is the standard deviation about the mean number of points in a bin.  To plot this in 
the density recovery profile, multiply by the scaling factor for each bin: 
 

ii

i
i

VVVN
VND

Δ
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Δ

Δ
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Substituting for ΔVi 
 

( )1333/4
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Now if we let 

33/4

1

rV
Dc
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π
 

 
then 

133 2

'

+−
=

ii

Dc
iσ  

 
The value Dc depends only on the sample volume V and the bin width Δr.  It has units of 
spatial density and it is called the critical density.  As long as D is large compared to Dc 
then the estimates for each bin will be good, and the estimate for the effective radius will 
be reliable.  One measure of the robustness of this measure is the ratio of the densities.  
This ratio is called the reliability factor. 

 
 

 
cD

Dk =



Chapter 1 

1-8 

The maximum value of the effective radius is constrained by the observable sample 
density.  It is therefore limited by how tightly the points within the effective radius can be 
packed.  Maximum packing in three dimensions is achieved by hexagonal close packing, 
where the volume v per point would be 
 

2

3
mrv =  

Since 

v
D 1
=  

we have 
 

D
rm

23 =  

 
The packing factor is then defined as the cube of the ratio of the effective radius to the 
maximum radius, or alternatively, the ratio of the effective volume to the maximum 
volume 
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Since the effective radius can range from 0 to rm, the packing factor can range from 
0 to 1. 
 
 

K, G and F-functions in 3D 
 
The spatial statistics community makes wide use of the K, G and F-functions. This 
section defines those functions for 3D and mentions brief implementation details. The 
implementation of these routines is provided by Baddeley4 and is available via the Spatial 
Analysis 3D software. 
 

The K-function 
 
The K-function is the cumulative version of the density recovery profile (DRP).  The 
advantage of the K-function is that it is not necessary to specify a bin width, and so we 
are not troubled by setting large bin widths when the number of cell bodies is low. The 
K-function is defined over a range of distances t with the univariate K-function defined in 
three dimensions as: 
 

( ) ( ) ( )∑∑
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− ≤−=
n

i ij
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n
B

tK
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1
2 ,  
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I(·) is the indicator function; it counts the number of cell pairs that are less than or equal 
to some distance t apart from each other. The term w(i, j) is the weighting factor to adjust 
for border corrections; it measures the fraction of the circumference of the sphere 
centered at xi and with radius ||xi - xj|| that is within the sampling window A.  
 
Under the null hypothesis of complete spatial randomness (CSR), the theoretical K-
function in 3D is K(t) = 4/3πt3.  The K-function is measured over a range of distances, 
typically from 0 to s/4, where s = min(h,w,d) (often s can be smaller). 
 

 
Table 1.1  Notation used in the K,G, and F-functions 

term definition 
n Number of cells in the sample space 
xi Location of ith individual data point, given as a 3D 

vector (x,y,z) 
B 3D sample volume (“brick” or “bounding box”).  All 

data points are assumed to be sampled within this 
volume of width w, height h, and depth d 

|B| Volume of the bounding box ( )dhw ××  
K(t) K-function: average number of cells within distance t 
F(t) F-function: empty space function 
G(t) G-function: cumulative nearest neighbor function 

 
 

The G-function 
 
The G(t) function is also a cumulative plot over a range of distances, measuring the 
fraction of nearest-neighboring distances that are less than or equal to t: 
 

( ) ( )∑
=

≤=
n

i
i tyI

n
tG

1

1  

 
where yi is the distance of cell i to its nearest-neighbor of the same type. Since G is a 
cumulative probability, the range of G is [0,1].  Hence, G(t) is normally evaluated over a 
range from 0 to some value h such that G(h) = 1. 
 
Under the null hypothesis of complete spatial randomness (CSR), the theoretical G 
function in 3D is G(t) = 1 - exp(-4/3λπt3). 
 

The F-function 
 
The F-function is similar to the G-function, except that rather than measuring the distance 
from each cell to its nearest-neighboring cell, we measure the distance from each grid 
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point to its nearest neighboring cell. We place (typically) g grid points at regular intervals 
throughout the sample field A (see below for implemenation details). This allows us to 
see whether any parts of the field are devoid of cells (which will not show up in the G-
function.) Hence, we define: 
 

( ) ( )∑
=

≤=
g

i
i tyI

g
tF

1

1  

 
where yi is the distance of grid point i to the nearest cell. 
 
Under the null hypothesis of complete spatial randomness (CSR), the theoretical F-
function in 3D is F(t) = 1 - exp(-4/3λπt3). 
 

Implementation notes for the F-function 
 
The Baddeley implementation of the F-function works by dividing the bounding box into 
small voxels; each voxel is a cube of side length v (this is the VSIDE parameter).  If the 
bounding box is of size w×h×d, the number of voxels made is roughly (w/v)×(h/v)×(d/v) 
(the actual number is (w/v + 1)×(h/v + 1)×(d/v + 1), note the extra 1 in each dimension). 
For each voxel, the distance to the nearest cell is computed.  These distances are then put 
into a cumulative histogram and normalized by the number of voxels to produce the 
cumulative probability.  Hence, the smaller v is, the more voxels are created, and thus the 
more accurately F is estimated. (Conversely as v increases, there are fewer voxels and so 
F becomes more discrete.) 
 
However, the more voxels, the more computation required.  For example, in a bounding 
box of size 1000×1000×1000µm3, if v = 100µm, then ((1000/100) + 1)3 = 1331 voxels 
are created.  If, however, we increase v by a factor of 2, the number of voxels decreases 
to 216.  It is very important, therefore, to choose the number of voxels carefully.  In the 
Spatial Analysis 3D software, the number of voxels in the largest dimension can be 
chosen inside the options menu (see Section 2 Running the Software: Options).  This 
value is also known as the number of F-divisions.  Typically the number of F-divisions 
should be between 10 and 100; anything larger will significantly increase the 
computation time.  Thus, a sample space with dimensions 1000µm × 1000µm × 1000µm 
and a value of 100 for the number of F-divisions will yield 1,030,301 total voxels!   
 

The Boundary Cell Problem 
 
All of the above analyses are plagued by the fact that cells near the boundaries of a field 
will have incomplete Voronoi domains, uncertain numbers of Delaunay neighbors, and 
they may have nearest neighbors less than those detectable within the field.  Furthermore, 
the autocorrelation analysis will be biased by the inclusion of these cells.  There are a few 
ways to circumvent the problem of such boundary, or in the present parlance, “infected”, 
cells (“infected” because their Voronoi, Delaunay, and nearest neighbor data are suspect).  
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One way is to identify a secondary boundary within the sampled field such that all cells 
within the secondary boundary have their complete Delaunay and Voronoi tessellations 
revealed by the presence of neighbors outside of this boundary (but within the total 
sample).  The autocorrelation analysis can proceed similarly, sampling cells within the 
secondary boundary such that the entire complement of cells surrounding every cell 
within the secondary boundary are included within the correlogram generated, even if 
those between the border of the sample and this secondary boundary are never positioned 
at the origin of the correlogram.  These approaches are effective when the density relative 
to the total size of the sampled field is large; they are more problematic when fields are 
small and/or densities are low, conditions that are typically exacerbated when working 
with the third, Z, dimension.  The alternative is to attempt a compromise solution, 
eliminating only those data associated with such infected cells.  This is indeed a 
compromise, since while it may yield accurate estimates of nearest neighbor data for a 
population of cells, the uncertainty of the tessellation for the infected cells may in some 
cases alter the actual tessellation of the next tier of cells beyond the infected ones, thereby 
producing some inaccuracy in the Voronoi and Delaunay analyses.  In practice, the 
difference in the Voronoi domains of such a second tier of boundary cells produced by 
this uncertainty is not likely to be great, and may be reasonably assumed to affect two 
population datasets similarly (experimental and control; real and random; etc) if they are 
matched in density.  The present program offers a number of options allowing the user to 
choose how to deal with these issues in various analyses, recognizing the trade-off 
between increasing the sample size at the cost of some inaccuracy associated with the 
number (proportion) of infected cells.  One is simply to exclude the data associated with 
such infected cells.   Another option, when conducting correlation-based analyses and the 
related K-function, is to mathematically correct for the asymmetric contributions made by 
cells near the boundary, as originally described by Rodieck and by Ripley5.  Further 
details are provided in each relevant section. 
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Getting Started 
 
To start the Spatial Analysis 3D program, MATLAB must be running.  If you do not have 
a full version of MATLAB, you can get information about purchasing it from The 
MathWorks: 
 
 (508)-647-7000 Phone 
 http://www.mathworks.com Web 
 info@mathworks.com Sales, pricing, and general information 
 
 
Spatial Analysis 3D was written using MATLAB 7.1 (Version 7.0 with Service Pack 3).  
The program will not run correctly unless you have MATLAB 7.0 or higher installed.  It 
is highly recommended that the service pack be installed with version 7.0 as this service 
pack fixes many critical bugs in MATLAB.   The source code for the Spatial Analysis 3D 
program is available at the main website: 
 
 http://www.nri.ucsb.edu/Labs/breese/SA3D.html 
 
On a PC or Mac, simply double click on the MATLAB icon.  To run MATLAB on a 
UNIX system, type matlab at the operating system prompt, or type matlab & to run 
the program in the background. 
 
Once MATLAB is running you need to “install” the program.  When you run the 
installation program, MATLAB will copy the files into the proper directories.  Then, all 
the mex files will be compiled for your version of MATLAB and operating system.  
Finally, the path from within MATLAB will be modified so that the program can operate.  
Additionally, mex files for Windows XP running MATLAB 7.1 are supplied along with 
the program. 
 
In the instructions that follow, >> denotes the matlab prompt, and $ denotes the unix shell 
prompt. 
 

Windows Users 
 
1. Download the main file SpatialAnalysis.zip and the install file, 
InstallSpatialAnalysis.m.  Make sure the two downloaded files are in the 
same folder on your computer.  Alternatively, the InstallSpatialAnalysis.m 
file will download the zip file directly from the main website. 
 
2. Start MATLAB and change the current directory to the folder where the two 
downloaded files are located.  You can change the current directory at the top of the main 
MATLAB window.  At the matlab prompt, type: 
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>> installSpatialAnalysis 
 
3. Once the Spatial Analysis 3D program has been installed, simply type in 
SpatialAnalysis at the matlab prompt to start the software in the future. 
 
>> SpatialAnalysis 
 

UNIX/Mac Users 
 
1. Create a folder where you want to store the program.  In this example, the install 
directory is /tmp/ucsb3d (normally however you will permanently install it within 
your home directory). 
 
$ mkdir /tmp/ucsb3d 
 
2. Download SpatialAnalysis.zip, put into this directory, and unzip it: 
 
$ cd /tmp/ucsb3d 
$ unzip SpatialAnalysis.zip 
 
3. This will create two directories, SpatialAnalysis3d and userfun. Both these 
directories will need to be added to the MATLAB path.  On UNIX, one way to add the 
program to your path is to set the MATLABPATH environment variable, e.g. for bash 
users:  
 
$ export 
MATLABPATH=/tmp/ucsb3d/SpatialAnalysis3D/:/tmp/ucsb3d/userfun 
 
This line could be added to your ~/.bashrc  file so that it is run every time you login. 
 
4. Now start MATLAB (the JVM is required): 
 
$ matlab 
> SpatialAnalysis -setup 
 
This setup process is needed only once (to compile C functions). Depending on your C 
compiler, you may get a few warnings. 
 
5. Installation is now complete, and you can start the program within MATLAB simply 
by typing: 
 
> SpatialAnalysis 
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The first time Spatial Analysis 3D starts, the Tip of the Day dialog box will be present.  
You can scroll through the tips one at a time, view a new one each time you start Spatial 
Analysis 3D, or close the Tip of the Day for all future sessions.  If you do choose to close 
the Tip of the Day at startup, you can retrieve it from the Help menu or under the options 
menu. 
 
The following page shows a picture of the Spatial Analysis 3D software.  Below the 
picture is a description of each part of the main window.   

 

  

 

 

 
 
 
 
Following certain plotting commands, the data table is hidden from view and a second 
plot is visible on the right hand side of the main window.  An example of this is shown on 
the following page. 

Menubar

Left subplot 

Data table
Message window 

Wait bar

Tip of the Day dialog box 



Chapter 2 

2-5 

 
 
 
 
 
 
 
 
 
 
 
 
 
The next chapter describes the operation of the software.  Throughout the chapter, the 
analyses and plots that are illustrated will be taken from the example file, 
UserguideData.sa3, that is supplied with the software.  It is recommended that one 
follow along using the data supplied in the example file. 
 
 

Left subplot: Includes all the analysis plots, 
false color plots and the autocorrelogram 

Right subplot: Includes all the histogram plots, 
including the density recovery plot 
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File Menu 
 
Any operation that is file related is handled in the File Menu.  Under the File Menu you 
can open or close data files, export statistical data, print the graphs, or exit the program. 
 

 
 

Opening and Closing Data Files 
 
To open a data file that contains x,y,z data, select the Open Menu or use the Ctrl+O 
keyboard shortcut.  You can also choose from the four most recently opened data files 
beneath the Print Preview Menu item. 
 
The four supported file types for data files are *.xls, Excel worksheet files; *.csv, comma 
separated values files; *.txt, tab-delimited text files; and *.sa3, Spatial Analysis 3D files.  
With the first three file types, the file format is generally the same.  The first line in the 
file is a list of column headings.  The next N lines are the data values separated by the 
appropriate delimiter.  The *.sa3 files are Matlab binary files that can only be opened by 
Spatial Analysis 3D.  They allow the user to save the current session of the software and 
open it at a later time. 
 
The column headings in the first line must contain the following three values: ‘X’, ‘Y’, 
and ‘Z’, where the single quotation marks simply represent the fact that X, Y, and Z are 
characters and are not explicitly used in the file.  These headings are capitalized, 
however.  Further headings must not contain any special characters (*&%^$) or spaces.  
If spaces are found, Spatial Analysis 3D will simply remove them.  An example of a 
*.csv file is shown below: 
 
ObjectID,X,Y,Z,T,Volume,Area,Circularity,AverageIntensity,SurfaceArea 
294,292.09570,1195.7265,80,1,49.438476,12.359619,0,3342.5,31.72613525 
293,298.72460,664.98242,80.33,1,37.078,12.359619,0,3430.664,19.08319 
292,495.9414,635.773,78.5,1,49.43847,18.5394,0,3012.25,19.08319 
291,282.1513,533.2285,77,1,37.07885,6.17980,0,3299.664,12.35961 
... 
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Exporting Data 
 
Spatial Analysis 3D has the ability to export all the statistical data generated in the 
program to a tab-delimited text file.  This file can then be read into any program that 
reads text files such as Excel. 
 
When the Export Menu is selected, the program checks to see if the three main analyses 
(Voronoi, near neighbor/Delaunay, autocorrelation) as well as the F, G, and K analyses 
have been performed.  If they have not, they are performed at this time.  Their success is 
echoed in the message window: 
 

 
 
Note that when these analyses are performed under the Export Menu, no new plots or 
graphics are generated in either subplot. 
 
After the analyses have been performed, the program will bring up the Save Selected 
Parameters dialog box. 
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You can select parameters to save by highlighting them in the top (Unselected) window 
and moving them to the lower (Selected) window by using the down arrow button, and 
vice versa.  To select all the parameters, simply click on the Select All button.  Once you 
have selected the parameters you wish to save, click on the Save button.  This will bring 
up the familiar Save As dialog box.  Choose a location and filename for your data, and 
the program will save the parameters you selected as a tab-delimited text file. 
 

 

Printing 
 
You can print the main window by selecting the Print Menu or use the Ctrl+P keyboard 
shortcut.  You can also preview the print job by selecting the Print Preview Menu.  
Before the main window is printed, the message window, status bar, and the clock are 
made invisible.  They are returned to the visible state after the window has been printed, 
or the print preview window has been closed.   
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Within the print preview window, you can choose the page setup that defines how the 
window will be printed on the page.  Simply click on the Page Setup button near the top 
of the window.  Here you can select the paper size, paper orientation, the position of the 
figure on the page, etc.  When you are finished with the page setup, click on the OK 
button and you will be taken back to the print preview window. 
 

 
 

 
 
While some of these windows will look different on a UNIX or Linux operating system, 
the basic functionality should remain the same. 
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Edit Menu 
 
Operations that result in modifying the main window are performed in the Edit Menu.  
These operations include: sending a subplot to a new window, clearing the message 
window, copying the figure to the clipboard, and modifying the colormap. 
 

 
 

Copying and Sending the Figure Window 
 
You can copy the figure window to the clipboard or send either left or right subplot to a 
new figure window from the Edit Menu.  To send the left subplot to a new figure, simply 
click on the Send to New Figure menu and choose Left Subplot.  
 

 
 
Here the data points plot is copied to a new Matlab figure window.  This figure has full 
Matlab capability such as zoom, rotation, annotation, etc.  Use this feature, for example, 
to prepare figures to put into PowerPoint. 
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You can also copy the main figure window to the clipboard by using the Copy Figure 
menu.  This can be useful if you would like to copy the entire window into PowerPoint 
for example.  The format by which the figure is copied is defined inside the Copy 
Options menu. 
 

 
 
For Windows users, copying a figure as a metafile will allow for maximum retention of 
graphics information and will produce the best-looking graphics.  However, with some 
very complicated graphics, copying as a metafile will cause Matlab to hang up as it is 
trying to replicate the metafile onto the clipboard.  In these cases, copy as a bitmap. 
 

Editing the Colormap 
 
Each MATLAB figure window has a colormap associated with it. A colormap is simply a 
three-column matrix whose length is equal to the number of colors it defines. Each row of 
the matrix defines a particular color by specifying three values in the range 0 to 1. These 
values define the RGB components (i.e., the intensities of the red, green, and blue video 
components).  Matlab then maps the data that is plotted to this colormap; the lowest value 
to the first color and the highest value to the last color with a linear relationship in 
between. 
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Choose between different 
colormaps by selecting them from 
the Colormap Menu.  You can 
invert the colormap by selecting the 
flip map menu. 
 
 
 
 
 
 
 
 

 
 
You can even modify the current colormap to your own liking by choosing Edit 
Colormap… from the Edit Menu.  When you do, the Colormap Editor will appear with 
the current colormap loaded.  Change the position, color, or number of markers that 
define the colormap.  When you are finished, apply the new colormap and continue. 
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Tools Menu 
 
Spatial Analysis 3D is equipped with a set of tools that operate on the plots and data 
table. The Tools Menu provides access to these tools and to the options for the software. 
 

 
 

Plot Manipulation 
 
Included in Spatial Analysis 3D are four tools that can be used to manipulate the plot on 
the left-hand side of the application (left subplot), Zoom In, Zoom Out, Rotate 3D, and 
Auto Rotate.  Like the names imply, the zoom commands zoom in and out of the current 
plot.  Zoom In will zoom in toward the center of the plot by 2X.  In contrast, Zoom Out 
will zoom out from the center of the plot by 2X.  When the plot is zoomed in, the subplot 
will be clipped by any of the following: the data table, message window, or the 
application itself.  If the zoom commands are not having the desired effect, try using the 
Send to New Figure command in the Edit Menu, and modifying the plot with a full set 
of Matlab tools. 
 
There are two ways you can rotate a plot within Spatial Analysis 3D: Rotate 3D or Auto 
Rotate.  Rotate 3D enables you to rotate the plot to any orientation with the mouse. 
Rotation involves the reorientation of the axes and all the graphics objects contained in 
the plot. Therefore, none of the data defining the graphics objects is affected by rotation; 
instead the orientation of the x-, y-, and z-axes change with respect to the viewer.  When 
enabled, Rotate 3D provides continuous rotation of the plot and the objects it contains 
through mouse movement. A numeric readout appears in the lower left corner of the 
figure during rotation, showing the current azimuth and elevation of the axes. Releasing 
the mouse button removes the animated box and the readout.  To return the plot to its 
original orientation, double click on the plot with the rotation arrow still enabled. 
 
You can also rotate the plot automatically by using the Auto Rotate command.  In this 
way, you can view the plot as it spins around without using the mouse.  During the 
rotation, the plot will start in perspective view (30º elevation, -37.5º azimuth) and rotate 
through 360º of azimuth with the elevation fixed at 30º.  Once the Auto Rotate feature 
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has been started, there is no way to exit the rotation.  You simply have to wait for the 
rotation to stop before you proceed. 
 
In addition to the plot manipulation tools available in the Tools Menu, you can also use 
Matlab’s built-in Property Editor to manipulate and edit any of the plots (even the 
histograms in the right subplot).  To enable the Property Editor, simply double click on 
the desired subplot when no other tools are enabled (i.e. Rotate 3D).  When the Property 
Editor is enabled, it will appear at the bottom of the Spatial Analysis 3D figure.  The 
Property Editor window is fixed in its location.  You can, however, resize the window 
and move both windows around simultaneously.   
 

 
 
Once the Property Editor has been enabled, you can click on any object in the figure 
window to view and/or modify that object’s properties.  Be careful, as changing the 
properties of certain objects in the figure may have undesirable effects to the Spatial 
Analysis 3D application. 
 
For more information on the Property Editor, see the Matlab help documentation. 
 

View All Delaunay Tetrahedra 
 
After the Delaunay Tessellation analysis is performed, one can view all the tetrahedra in 
succession by choosing the View All Delaunay Tetrahedra under the Tools Menu.  
This menu item becomes active only after a Delaunay analysis has been performed on the 
loaded dataset.  View All Delaunay Tetrahedra will cycle through all tetrahedra that 
have not been filtered and render them sequentially in the left subplot.  As the program 
moves from tetrahedron to tetrahedron, the individual statistics for each is displayed in 
the data table.  There are often a conspicuously large number of tetrahedra, so minimum 
time is spent on each one.   
 
Because this operation may take significantly longer than the user anticipated, a red stop 
button is made visible that the user can use to stop the operation.  One may also hit the 
ESC key to stop the operation as well. 
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Restore Marker Size 
 
When plotting the False Color Maps (see Plot Menu section), the current point is plotted 
as a larger sphere than it should be.  This is to highlight which point is current.  If you 
would like to view the plot with all points at their default size, select the Restore Marker 
Size Menu.  This can be especially useful if you send the plot to a new figure for 
presentation purposes.  The Restore Marker Size tool does not affect any plot other than 
the False Color plots. 
 

View Data Table 
 
Many of the plotting commands use the right subplot to display the plot.  If instead of the 
right subplot you wish to view the data table, select View Data Table from the Tools 
Menu. 
 

View Menu 
 
The View Menu determines the view orientation and aspect ratio of all the plots in the 
left subplot.  By default the perspective is set to 3D perspective and the aspect ratio is set 
to auto. 
 
The auto Aspect Ratio mode that is enabled by default allows Matlab to plot graphics in 
any shape axis.  This means the x-,y-, and z-axes do not have to have the same relative 
scale.  In the case of Spatial Analysis 3D, this distorts the plots and makes it appear to 
always have a cubic volume.  To fix all the axes to the same relative scale, select the 
Equal Aspect Ratio Menu.   
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The default view for all plots in the left subplot is 3D Perspective (30º elevation, 322.5º 
(-37.5º) azimuth).  You can also select between any of the 2D orientations (e.g. X-Y 
Plane).  If you would like to choose a custom orientation, select the Set View… menu.   
 
 

 
 
Choosing Set View… in the 
View Menu allows the 
orientation to be freely set. 
 
 
 
 
 

 
 
Azimuth is a polar angle in the x-y plane, with positive angles indicating 
counterclockwise rotation of the viewpoint. Elevation is the angle above (positive angle) 
or below (negative angle) the x-y plane.  
 
The following diagram illustrates the coordinate system. The arrows indicate positive 
directions. 
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New Random Set 
 
Spatial Analysis 3D has the ability to create random and periodic datasets.  Currently, the 
only periodic dataset available is hexagonal close packed (HCP).  To select the 
parameters governing the creation of these datasets, see the next section, Options.  When 
you would like to create a new dataset, however, choose New Random Set from the 
Tools menu. 
 
When a new random set is generated, several messages are printed into the message 
window.  If the generation of random data is successful, a message will be printed that 
tells you the random set has been generated.  It will also tell you how many rejected 
points there were based on the generation criteria, and finally the packing density of the 
points.  Some of the simulated points were rejected because their positioning overlapped 
with previously generated points, where each point is also simulated to have some 
physical size. 
 

 
 
It is possible for a random set generation to fail, for example, if the mean minimal 
distance is too large for the number of points desired.  When this happens, an error 
message is printed with a suggestion on how to proceed.  
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Options 
 
The Spatial Analysis 3D software has many different options that determine the behavior 
of the analyses.  To change these options, simply select the Options menu from the Tools 
menu.  After selecting the Options menu, you will see the options figure with the 
General tab selected.  When you are finished modifying the options, simply click on the 
DONE button, and all the new options will be saved.  To exit without saving the changes, 
click the CANCEL button.  Clicking the RESET button will restore the options back to 
the default settings, but only under the currently selected tab. 
 

 
 
With the General tab selected, you can change options that are general to the overall 
operation of Spatial Analysis 3D.  This is where you define the exact location of the 
boundaries with respect to the data, and the units used.  You can also change the default 
marker size for the plots, the transparency used when creating transparent patch objects, 
and the decimal precision used in the data table.  The final feature that can be controlled 
from the General tab is the Tips dialog box that shows when the software starts.  If you 
choose to not show the Tips at startup, but later decide you do want to see the Tips at 
startup, you can choose that option here. 
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The next tab in the Options figure is the NN/Delaunay tab.  As the name implies, this is 
where you change the options related to the near neighbor and Delaunay analysis.  It may 
not be immediately obvious, but the Delaunay tessellation is necessary in determining the 
near neighbors.  Thus, these two analyses are combined under one tab. 
 
 

 
 
 
It is often important to compare like datasets using histograms with the same bin size and 
number of bins.  Therefore, under the NN/Delaunay tab, you can choose the bin size and 
number of bins for all the histogram plots related to near neighbor or Delaunay analysis.  
We will see later in the Plot Section how one can go about determining the appropriate 
bin size when nothing is known about the dataset. 
 
The final option that can be set here is the Filter for the NN/Delaunay analysis.  The 
current choices for this filter are: “None”, “Convex Hull”, “Infected Points”, and “Double 
Infected Points”. 
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When the filter is set to “None”, all the points in the sample space are used in the near 
neighbor and Delaunay statistics.  Those points that make up the convex hull, defined as 
the smallest convex region that contains the data set, can be excluded by choosing 
“Convex Hull” as the filter.  The next level of filtering is “Infected Points”.  Infected 
points are defined as those points that are closer to the boundary than their nearest 
neighbor.  This is intuitive in that it is easy to imagine the possibility that a data point 
exists just outside the boundary and that this point would become the nearest neighbor if 
it had been included in the dataset.  The most restrictive filter to choose from is “Double 
Infected Points”.  In this case, a point is considered double-infected if any of its near 
neighbors is infected.  It is important to remember that as the filter gets more and more 
restrictive, fewer data points are available for statistical calculations.  Thus, there is a 
trade off between the size of the dataset and the reliability of the statistics. 
 
 
The next tab in the Options figure is the Voronoi tab.  Just like the NN/Delaunay options, 
it is often important to compare like datasets using histograms with the same bin size and 
number of bins.  Therefore, under the Voronoi tab, you can choose the bin size and 
number of bins for the Voronoi volume and area histograms. 
 
Under the Voronoi options tab one can also choose a filter for the Voronoi analysis.  The 
choices for the filter are: “Convex Hull”, “Infected Points”, and “Double Infected 
Points”.   “Convex Hull” is the lowest level of filter for the Voronoi analysis.  By 
definition, a point on the convex hull will not have an enclosed Voronoi domain, so these 
points must be filtered.  An infected point is defined as any point that has a Voronoi 
domain that is enclosed, but one or more of the vertices lies outside the sample space 
boundary.  A double infected point is a point where one or more of the Voronoi vertices 
is a vertex of an infected point or convex hull point.  As with the NN/Delaunay filter, as 
the Voronoi filter gets more restrictive there is a trade off between reliable data and size 
of the statistical dataset. 
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The next tab in the Options figure is the Autocorrelation tab.  To determine the density 
recovery profile, and also the tri-histogram plot (see Plot section), the number of bins and 
the maximum radius for the autocorrelation must be known before the autocorrelation is 
performed.  Both of these are set under the Autocorrelation tab in the Options figure. 
During the autocorrelation, the program also plots a 3D rendering of the correlation in the 
left subplot.  It does this by plotting each point colored with respect to its density in the 
density recovery plot, and sized by the option Marker Size in the options.  The final two 
options under the Autocorrelation tab are the Filter and Edge Correction to use during 
the autocorrelation analysis.  The filter determines which points will be used in the 
autocorrelation analysis.  As points get near the boundaries, their near neighbor influence 
on the autocorrelation is diminished.  We can either exclude these points near the 
boundaries, or add edge correction terms to the calculated densities.  The most restrictive 
of the filters is the “Max Radius”, which ignores all points that are closer than the max 
radius from the boundaries.  The only edge correction available is “Fractional” which 
calculates the fraction of the autocorrelation sphere that lies outside the sample space 
boundary and scales the density by this fraction. 
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The next tab in the Options figure is the F,K,G tab.  The F, K and G-functions are spatial 
functions that can evaluate the degree of regularity in a population of cells (see 
Chapter 1: K, G and F-functions in 3D).  The F-function measures the distance from each 
grid point to its nearest neighboring cell.  The K-function is the cumulative version of the 
density recovery profile. The G-function is a cumulative plot over a range of distances, 
measuring the fraction of nearest-neighboring distances that are less than or equal to t.  
For each of these functions, the range over which to calculate them and the number of 
points in the calculation must be set in the options.  The F-function has an additional 
parameter, “Number of F-divisions”, that must be set.  This represents the number of grid 
points in each direction we will divide our sample space into when performing the 
calculation. 
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The last tab in the Options figure is the Random Data tab.  The Random Data tab 
allows the user to choose the criteria by which a simulated set of data is generated.  This 
simulated data can be used to compare against measured data sets.  Currently there are 
two types of simulated data the user can choose from: Random and HCP (hexagonal-
close-packed).   
 
When Random is chosen, the user first chooses how many points will be placed in the 
sample space.  How they are arranged depends on the mean minimal distance established, 
the standard deviation associated with the mean distance, and the smallest permissible 
distance, enabling a simulation that respects a physical limitation imposed by, for 
example, cell size.  First, a point is generated inside the sample space in a random 
location.  As each new random point is generated, its shortest distance to all other points 
is compared against a randomly sampled minimal distance dmin, derived from the 
distribution defined by that mean and standard deviation.  Each point is accepted into the 
simulation if that shortest distance is greater than dmin. 
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When HCP is selected, a hexagonal lattice will be generated that fills the available 
volume.  The spacing of the lattice is determined by the parameter Mean minimal 
distance in the options menu; from this, the number of data points that are required to fill 
the volume is automatically calculated.  After the lattice has been generated, points are 
independently moved by adding zero-mean Gaussian noise, with standard deviation 
determined by the option Standard deviation. 
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Analysis Menu 
 
To display any graphics other than the data points, the appropriate data analysis must first 
be performed.  All analysis tools are under the Analysis Menu. 
 

 
 
You may select the desired analysis by choosing it from the Analysis Menu or by using 
the appropriate keyboard shortcut (e.g. Ctrl+N).  Some of the data analysis under this 
menu are point-based rather than population-based; that is, the data are specific to a 
particular point only (e.g. Near Neighbor analysis).  Other data are population-based, 
such as Delaunay Tessellation.  
 

Near Neighbor  
 
The Near Neighbor analysis uses the Delaunay tessellation to find all near neighbors to 
every data point.  All points will have at least one near neighbor (i.e. those near the 
boundary may have as few as a single near neighbor).  One of the near neighbors will be 
the closest to the point of interest; this point is referred to as the nearest neighbor. 

 
 
 
 
Choose the Near Neighbor menu 
item from the Analysis Menu, or 
use the Ctrl+N keyboard shortcut. 
 
 
 
 
 

 
When the Near Neighbor menu is selected, the program performs the Delaunay/Near 
Neighbor analysis if it has not been performed before.  Then, the near neighbor diagram 
is plotted in the left subplot.  In this diagram, the current point is plotted as a black dot 
while all near neighbors are plotted as green dots with green lines connecting them to the 
point of interest.  The nearest neighbor is plotted in red with a red line connecting it.  
Finally, the data table is made visible to the right of the subplot.  Here, the data summary 
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is shown along with the near neighbor statistics for the current point.  Try using the arrow 
keys to scroll through the points in the plot.  The up and down arrows will scroll by one 
point while the left and right arrows will scroll by ten points at a time. 
 

 
 
 
The second to last entry in the data table is the Point Classification.  The Point 
Classification for the Near Neighbor analysis represents the type of data point that is 
being rendered in the plot.  The type of point can be one of the following: 
 

“1”  Normal Point  
“2” Double Infected Point  
“3” Infected Point  
“4” Point on the Convex Hull 
 

A point is flagged if it does not meet the filter characteristics set by the user under the 
Options menu (see Options section for more details).  When a point is flagged, its near 
neighbor diagram is not rendered in the left subplot and its statistics are not used to 
generate the histogram plots (see Plot Menu section).  Its statistics are available in the 
data table, however, to the right.  For the Near Neighbor analysis, the default filter type 
is Infected Points. 
 

Delaunay Tessellation 
 
The Delaunay Tessellation analysis is based upon an identical analysis to that described 
above in the Near Neighbor analysis, but the derived statistics and graphics plotted are 
different.  In three dimensions, a Delaunay tessellation is a collection of tetrahedra.  
When the Delaunay Tessellation menu is selected, the program renders the Delaunay 
tessellation by rendering each tetrahedron in the left subplot.    
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Choose the Delaunay Tessellation 
menu item from the Analysis Menu, 
or use the Ctrl+D keyboard 
shortcut. 
 
 
 
 

 
Like in the Near Neighbor analysis, the arrow keys can be used to scroll between the 
individual tetrahedra.  The tetrahedron number that is currently being rendered is shown 
in the data table as well as the total number of tetrahedra.  As before, the up and down 
arrows scroll through one tetrahedron at a time while the left and right arrows scroll 
through ten tetrahedra at a time.  You can view all the tetrahedra in succession by 
choosing the View All Delaunay Tetrahedra under the Tools Menu.  
 

 
 
 
The Delaunay tetrahedra are sorted by the four point numbers that make up each 
tetrahedron.  These points are always in ascending order and then sorted by the first point 
number.  The tetrahedra are filtered in a similar manner to the near neighbor points 
above.  In each case, there are four points that will have a classification.  If any one of 
these points is flagged, then the tetrahedron itself is flagged and is not rendered.  As 
before, the statistics for tetrahedra that have been flagged are not used in generating 
histograms, but the data are still available in the data table.    
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Voronoi Domains 
 
The Voronoi Domains menu uses the Voronoi routine in the Qhull package to determine 
the vertices that make up the Voronoi domains.  During the calculation, the program also 
determines the Voronoi domain volumes and surface areas. 
 
 

 
 
Choose the Voronoi Domains 
menu item from the Analysis Menu, 
or use the Ctrl+V keyboard 
shortcut. 
 
 
 
 
 

 
When the Voronoi Domains menu is selected, the program performs the Voronoi 
analysis if it had not been performed before.  The Voronoi domain associated with a 
given point is then plotted in the left subplot.  In this diagram, the current point is plotted 
as a red asterisk (*) and the facets as green and semi-transparent.  Again, the level of 
transparency is set in the Options menu.  Finally, the data table is made visible to the 
right of the plot.  Here, the data summary is shown along with the Voronoi analysis 
statistics for the current point.  Try using the arrow keys to scroll through the points in the 
plot.  The up and down arrows will scroll by one point while the left and right arrows will 
scroll by ten points at a time. 
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The second to last entry in the data table is the Voronoi Classification.  The Voronoi 
Classification represents the type of data point that is being rendered in the plot.  The 
type of point can be one of the following: 
 

“1”  Normal Point 
“2” Double Infected Point 
“3” Infected Point 
“4’ Point on the Convex Hull 
“5” Other 

 
A point is flagged if it does not meet the filter characteristics set by the user under the 
Options menu.  When a point is flagged, its Voronoi domain is not rendered in the left 
subplot and its statistics are not used to generate the histogram plots (see Plot section).  
Its statistics are available in the data table, however.  For the Voronoi analysis, the default 
filter type is Infected Points.  Point Classification 5, “other”, is reserved for points where 
the Qhull routine failed for some reason.  The reason for failure can be viewed in the 
message window when that point is selected.  An example of one such error is, “qhull 
precision error: initial facet 2 is coplanar with the interior point”. 
 

Autocorrelation  
 
The Autocorrelation menu will render the autocorrelogram and calculate the associated 
statistics for the given data set.   
 

 
 
 
Choose the Autocorrelation 
menu item from the Analysis 
Menu, or use the Ctrl+A keyboard 
shortcut. 
 
 
 
 

 
When the Autocorrelation menu is selected, the program performs the autocorrelation 
analysis if it had not been performed before.  While the program is performing the 
autocorrelation analysis, the plot is generated.  If the analysis has already been 
performed, selecting the Autocorrelation menu simply makes the plot visible.  The 
autocorrelogram is shown on the left, being a plot of the position of all points in the 
sample field relative to every other point.  It is portrayed as a series of incremental 
spheres.   In the plot to the right, a density histogram for the autocorrelogram is shown.  
This is also known as the density recovery profile (DRP).  The DRP is a graphical 
portrayal of the change in density as a function of eccentricity from the origin of the 
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autocorrelogram.  Both the autocorrelogram and the DRP reveal here a region near the 
origin in which density is lower than at greater eccentricities, a dead space, or “exclusion 
zone”, indicating that the probability of finding another cell of like-type is lower than at 
greater distances from every cell.  An estimate of the size of this dead space is the 
“effective radius” (See Background section for more detail), being the radius of a sphere 
of equivalent integrated volume to the dead space relative to the average density at 
greater distances (indicated by the horizontal line in the DRP).  The effective radius is 
indicated by the vertical line, and is indicated in the box.  (NOTE: The vertical line in the 
example below falls directly between two bars and can not therefore been seen in this 
particular example.)   
 

 
 
 
The number of bins as well as the bin widths are set in the Options Menu.  To see these 
bins and how the points are arranged within them, the (-x,-y,-z) and (-x,-y,z) octants have 
been removed from the plot.  Furthermore, the points are colored by their density within 
the bin. 
 
By default the DRP is shown in the right subplot after the autocorrelation analysis.  The 
only time this is not true is when the autocorrelation statistics are chosen directly from 
the data table.  To view the statistics for the autocorrelation analysis in the data table, 
simply choose Tools|View Data Table from the menu bar.  Once the data table is visible, 
you can view the statistics for the autocorrelation.  Provided in the data table are the 
density, critical density, effective radius for the DRP, max radius, reliability factor, 
packing factor, the current point filter, and the edge correction algorithm.  For more 
information on these statistics, see Chapter 1: Spatial Correlation Analysis and its 
Derivatives. 
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F-Function 
 
The F-function measures the distance from each grid point to its nearest neighboring cell 
and plots the cumulative probability as a function of distance.  The fidelity of the plot is 
determined by the number of grid points placed in the sample field and the number of 
points used in the calculation.  Modifying these values is done through the Options menu 
(see Options).  For more information on the F-function see Chapter 1: The F-function. 
 
In the figure below, the plot of the F-function for the example dataset is compared to that 
of a Poisson distribution of cells. 
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G-Function 
 
The G-function calculates the fraction of nearest-neighboring distances that are less than 
or equal to a given distance t.  The fidelity of the plot is determined the number of points 
used in the calculation.  Modifying number of points and the range is done through the 
Options menu (see Options).  For more information on the G-function see Chapter 1: 
The G-function. 
 
In the figure below, the plot of the G-function for the example dataset is compared to that 
of a Poisson distribution of cells. 
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K-Function 
 
The K-function is the cumulative version of the density recovery profile (see Chapter 3: 
Autocorrelation).   The fidelity of the plot is determined the number of points used in the 
calculation.  Modifying number of points and the range is done through the Options 
menu (see Options).  For more information on the K-function see Chapter 1: The K-
function. 
 
In the figure below, the plot of the K-function for the example dataset is compared to that 
of a Poisson distribution of cells. 
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Plot Menu 
 
The Plot Menu is where you will find all the plotting commands for the program.  Most 
of the plotting commands are unavailable until you run the corresponding analysis first 
(Near Neighbor/Delaunay, Voronoi, Autocorrelation).  The default plot, being the 
only one that is always available, is the Data Points plot.  This is simply the plot of all 
the data points, measured or simulated, and their spatial location in the left subplot. 
 

 
 

False Color Maps 
 
Under the Plot Menu, there is a submenu item called False Color Map.  Inside this 
submenu, there are 5 plot commands available to all datasets, and 5 plot commands 
available to certain types of measured data.  The 5 plot commands available to all data 
are: Nearest Neighbor Distance, Maximum Neighbor Distance, Avg. Delaunay 
Segment Length, Voronoi Surface Areas, and Voronoi Volumes.  None of these 
commands is available, however, until the corresponding analysis has been performed.  
In a false color plot, the metric of interest (e.g. Nearest Neighbor Distance) for each point 
is rendered as a sphere at the location of the point.  The size of the sphere as well as its 
color is in relation to the value of the chosen metric of that point.  The colorbar to the 
right of the axis shows the mapping of the color to the data.  For each dataset, the data is 
normalized to the colorbar.  That is, the top most color will be mapped to the largest 
value in the dataset.  Colors are therefore relative to each other, but not across datasets. 
 
When a false color plot is chosen, the corresponding data table is made visible to the right 
of the colorbar.  The first 3 commands will bring up the Near Neighbor Analysis, and the 
last 2 commands will bring up the Voronoi Analysis.  The information in the data table 
will refer to the current point of interest.  This point is rendered in the left subplot as a 
sphere with the corresponding color, but the size of the sphere is made large so that it can 
be easily recognized.  As you scroll through points using the arrow keys, only the current 
point of interest is made large, while all others are returned to their appropriate size.  
Points that have been flagged by the current filter are plotted not as spheres, but as single 
points on the plot.  If you decide you want to send a false color plot to a new window so 
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that you can use it in a presentation (See Edit section), try restoring the current point to its 
original size by using the Restore Marker Size command under the Tools menu. 
 

 
 
The left subplot above contains an example of a false color plot showing the nearest 
neighbor distance for each data point.  Note that the current point is #1 and that this point 
is shown as a large cyan sphere near the left edge of the plot.  The distance to its nearest 
neighbor is almost 57 µm which according to the colorbar, makes it cyan. 
 
 

Nearest Neighbor Histogram 
 
A common way to display aggregate statistics in Spatial Analysis 3D is with the use of 
histograms.  The histogram plots take the data from the appropriate analysis and apply 
the current user-defined filter.  The filtered data is then placed into bins defined under the 
Options menu. 
 

 
 
 
 
To plot the histogram for the nearest 
neighbor data, choose Nearest 
Neighbor Histogram from the Plot 
menu. 
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When the nearest neighbor histogram plot is generated, the nearest neighbor data from 
each point that has not been filtered is used to generate the histogram below.  The bin 
widths, and number of bins used in this example are the default values.  The histogram 
plot is then displayed in the right subplot while the data points are displayed in the left 
subplot. 
 
 

 
 

There are many circumstances where it will be difficult to determine the bin widths 
and/or number of bins to use ahead of time.  In this case, you can automatically scale the 
histogram plot by right clicking anywhere on the plot and choosing Auto Scale Axis. 
 

Delaunay Segment Length Histogram 
 
When the Delaunay analysis is performed, the Qhull routine generates a Delaunay 
tessellation.  This tessellation represents a unique set of tetrahedra such that no data 
points are contained in any circumspheres of the tetrahedra.  Each tetrahedron is 
comprised of 6 segments that connect the 4 data points together, with several tetrahedra 
sharing a segment.  The unique set of these segments (being identical to the unique set of 
near neighbor distances) that define all the tetrahedra within the sample field are known 
as Delaunay segments.  The lengths of this unique set of Delaunay segments can be 
summarized into a histogram.  Like the nearest neighbor data, the Delaunay segment 
lengths are filtered by the NN/Delaunay filter defined in the Options menu.  You can 
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also auto scale the axis by right clicking inside the right subplot (see Nearest Neighbor 
Histogram). 

 
 
 

Delaunay Facet Area Histogram 
 
Each Delaunay tetrahedron from the NN/Delaunay analysis is comprised of 4 facets.  
Most tetrahedra will share each facet with another tetrahedron.  Therefore, there exists a 
unique set of Delaunay facets that can be used to define all the tetrahedra as well, and 
these too can be summarized in histogram form.  Like the nearest neighbor data, the 
Delaunay facet areas are filtered by the NN/Delaunay filter defined in the Options menu. 
 
On the following page there is a picture of the Delaunay Facet Area Histogram with the 
default number of bins and the default bin size from the Options menu.  As you can see, 
the data is skewed to the right.  That is, a significant portion of the data falls into the last 
bin, which in this case is anything 4105.1 ×> µm2.  If we look at the statistics contained 
within the text box inside the histogram axis, we see that the maximum area is actually 

4106.3 × µm2.  You can either adjust the number of bins or the bin size inside the Options 
menu to better distribute the data, or you can also auto scale the histogram by right 
clicking inside the right subplot (see Nearest Neighbor Histogram).  The bottom picture 
on the following page shows how the histogram would look if you use this auto scale 
options.  Note that the statistics in the text box have not changed—this is to be expected 
since our dataset has not changed, only the plot. 
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Plot of the Delaunay Facet Areas after using the auto scale feature: 
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Delaunay Tetrahedra Volume Histogram 
 
The NN/Delaunay analysis utilizes the Qhull routine to generate a Delaunay tessellation. 
This tessellation is a unique set of tetrahedra created from the data points such that no 
points are contained within any circumspheres of the tetrahedra.  The Delaunay 
tetrahedra are 4-sided polyhedrons from which one can calculate the volume.  Like the 
nearest neighbor data, the Delaunay volumes are filtered by the NN/Delaunay filter 
defined in the Options menu. 
 
Below is a picture of the Delaunay Volume Histogram.  In this example, the number of 
Delaunay tetrahedron volume bins has been set to 25 in the Options menu and the axes 
were auto scaled using the right mouse button (see Nearest Neighbor Histogram).  The 
result of these operations is a histogram that starts at zero and terminates at the largest 
value in the dataset, in this case 6105.1 × µm3.  The shape of the histogram in this example 
is quite different than the previous ones, i.e. Nearest Neighbor Histogram, etc.  Because 
the data points in this example were generated to approximate a random distribution, the 
histogram is skewed with a long tail extending to larger volumes. 
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Voronoi Surface Area Histogram 
 
When the Voronoi Domain analysis is performed, Spatial Analysis 3D utilizes the Qhull 
routine to generate the Voronoi cells associated with the current data set.  After the 
analysis is performed, the resulting data can be summarized and plotted as histograms.  In 
the figure below, the surface area of each Voronoi domain is calculated, the current user-
defined filter is applied, and then the filtered data is placed into bins defined under the 
Options menu.  In this example, the number of bins and the bin size used were the default 
values of 15 and 1x104 µm2 respectively.  As with any of the histogram plots, you can 
auto scale the axis by right clicking inside the subplot and choosing Auto Scale Axis.  
This will not change the value for the bin width inside the Options menu, however. 
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Voronoi Volume Histogram 
 
After the Voronoi Domain analysis has been performed, the data can be summarized and 
plotted in histogram form.  Below is the plot of the filtered Voronoi domain volumes.  In 
this example, the axes were auto scaled by using the right mouse button and choosing 
“Auto Scale Axis”.  The default filter “Infected Points” was also applied. 
 
 

 
 
 

Voronoi Domain Direction Vectors 
 
Voronoi domain direction vectors are used to describe the orientation of the Voronoi 
domains.  The definition of the direction vectors along with the algorithms used to 
generate them are described in Chapter 1: Voronoi Domain Direction Vectors.   When 
the Voronoi Domain Direction Vector menu is selected, the x, y, and z components of 
each Voronoi domain direction vector are parsed and a histogram describing these 
population components is created.  In the case where the data points are randomly 
distributed, the resulting Voronoi domains will have fairly random shapes.  This will 
result in summed direction vectors for each domain that include all different directions.  
The example on the following page shows a quiver plot of the direction vectors on the 
left and a histogram of the directions on the right.  If we normalize the direction vector to 
length one or less, we can see that we have a fairly even distribution of all values from -1 
to 1 in all directions. 
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In the example above, we illustrated how a random set of data generates a random set of 
Voronoi domain direction vectors and how these vectors can be broken down into their 
x,y, and z components.  The x,y, and z components have a uniform probability 
distribution between –1 and 1 as seen in the histogram plot.  If we force the Voronoi 
domains to vary consistently in their shape, however, the effect will be evident in the 
direction vectors.  Consider a population of points where the spacing between them 
grows with increasing z-direction.  The Voronoi analysis of this population will result in 
direction vectors like those shown below.  Here we see the vectors point in the positive z 
direction and toward the center of the population.  This is also apparent in the histogram 
where the z-direction is always positive and has the largest values, and the x and y-
directions are equal and dominated by the domains in the center with direction vectors of 
<0,0,1>. 
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In the background section, we described a situation where two direction vectors of 
opposing facets of a Voronoi domain may cancel each other out.  In fact, if we have a 
perfectly symmetric Voronoi domain, each facet will have an opposing facet and the 
resulting direction vector will be <0,0,0>.  If the Voronoi domain is three-fold symmetric, 
that is symmetric in the x,y, and z directions, then the second direction vector algorithm 
will also yield a <0,0,0> direction vector.  In the example below, we have generated a 
square lattice with equal spacing in the x,y, and z directions.  The result of the Voronoi 
tessellation is a set of square Voronoi domains.  In the figure below, an example of one 
such Voronoi domain is shown along with the histogram of the Voronoi direction vectors.  
As expected, all the x,y, and z components of the direction vectors are zero. 
 
 
 

 
 
 
 
If we take same square lattice but now increase the density of the points in both the x and 
y directions by 5X and perform the Voronoi tessellation, we get Voronoi domains like 
those in the following figure.  In this figure, the Voronoi domain that is depicted is 
elongated in the z direction due to the point spacing.  If we calculate the initial Voronoi 
direction vector, each facet still has an opposing facet and the result will be <0,0,0>.  We 
then apply the second algorithm to determine the relative contribution of each direction.  
The right figure shows the histogram due to that calculation.  Here we see that the 
contribution of the x and y directions is zero and the contribution of the z direction is 
approximately 0.45.  We interpret this by saying the direction vector points only in the z 
direction and that the Voronoi domain is elongated by approximately 45% in the z 
direction. 
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If we now take the original square lattice and increase the density of points in only the z 
direction by 5X, and perform the Voronoi tessellation, the resulting Voronoi domains will 
look like those on the left of the figure on the following page.  Here we can see that the 
Voronoi domains are elongated equally in both the x and y directions looking like a short 
square box.  Again, when we perform the initial Voronoi direction vector algorithm the 
result will be <0,0,0>.  When the second algorithm is applied, we arrive at roughly the 
opposite result of the previous example.  Here there is no z component to the direction 
vector, and the x and y components are equal around 0.33.  The Voronoi domain 
direction vector would therefore point along the diagonal of the domain within the x-y 
plane.  We can also interpret the histogram by saying the Voronoi domains are elongated 
equally in the x and y directions by approximately 33%.  In short, the second algorithm 
converts the direction vector into an orientation vector for the sake of extracting this 
information from a population with symmetric Voronoi domains.  In practice, the 
algorithm will rarely be employed in real biological datasets. 
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Autocorrelation Histogram 
 
Earlier in this chapter we performed an autocorrelation on the data.  This autocorrelation 
is simply a relative measure of every point’s distance from all others.  While generating 
the autocorrelation plot, cumulative statistics are gathered.  In the most basic form, we 
can keep track of all the distances from the point of interest.  When shown in histogram 
form, this diagram becomes the density recovery plot (DRP).  To explicitly plot the DRP, 
choose Autocorrelation Histogram from the Plot menu.  An example of the DRP is 
shown on the following page.  With a random set of data, the DRP should flatten out 
toward a constant value as the distance from the point of interest increases.  For example, 
we see that there are distances near zero where no points are found, out to about 20 µm.  
This region is commonly referred to as the dead space at the origin, or the “exclusion 
zone”, which may be produced by the physical size of the cells themselves, or by some 
other minimal spacing rule (a dmin rule) that precludes their being positioned close to one 
another.  In 3D, this dead space can be thought of as a volume.  If we choose to define 
this volume as a sphere with the equivalent volume, we can calculate an effective radius 
for the dead space.  The effective radius in this example happens to be exactly 20.0 µm, 
and it is shown in a text box in the upper left hand corner of the DRP. 
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Autocorrelation Tri-Histogram 
 
We discussed the DRP in the previous section, but perhaps a more thorough treatment of 
the autocorrelation data is the tri-histogram plot.  During the autocorrelation calculation, 
each point is moved to the origin (0,0,0) and all other points are re-plotted with respect to 
this translation.  When looking at the DRP, we are only concerned with the distance these 
points are from the origin, i.e. radius.  There are two additional directions, however, that 
define the position of the points in such a plot relative to the origin, being azmuthal angle, 
theta, and elevation angle, phi.  Together these three directions, radius, theta, and phi, 
make up the familiar spherical coordinate system. 
 
An example of a tri-histogram plot is shown on the following page.  This example is the 
same as that shown in the Autocorrelation Histogram section, except now we are showing 
both theta and phi as well.  Because the dataset used in this example is a random set using 
the dmin rule, the theta and phi data are evenly distributed, i.e. no preferred direction is 
present in the autocorrelogram.  Theta has equal probability from 0 to 2π and phi has 
equal probability from –π/2 to π/2 (phi can only have values in this range).  In the case of 
ordered data, hexagonally close packed for example, points lie not only certain distances 
away from one another, but also in particular directions.  It is possible to use tri-
histogram plots to recognize particular patterns embedded in data as a type of “finger 
printing”. 
 
 

 
 
 
Perhaps a more interesting example that illustrates the efficacy of the tri-histogram plots 
is an HCP lattice with jitter.  In this example, the HCP lattice was generated to have a 
mean minimal distance of 150 µm and a standard deviation of 5 µm, with the smallest 
permissible distance of 2 µm.  When the autocorrelation analysis is performed on this 
data, the following autocorrelogram is formed: 
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From the autocorrelogram one can see that there are local pockets of dense points.  While 
the DRP indicates a number of preferred radial distances from the origin, it does not give 
us information regarding the preferred angular directions.  Looking at the tri-histogram 
plot, one gets a better sense of the overall distribution of the autocorrelation points. 
 
 
 

 
 
 
Unlike the tri-histogram plot for the randomly distributed dataset using the dmin rule, the 
histograms for the HCP dataset with jitter show definite preferred direction and distance.  
In fact, there are certain radial distances and angles that are not allowed under these 
conditions.  With an extensive catalog of tri-histogram plots like those shown above, one 
might be able to extract a particular ordering or pattern in a dataset from the  
autocorrelation analysis alone. 
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Autocorrelation Exclusion Zone 
 
When the autocorrelation diagram is created, there exists a set of near neighbors to the 
origin (0,0,0).  These near neighbors can be found by performing a Delaunay tessellation 
on the autocorrelation dataset.  After the Delaunay tessellation is performed, the near 
neighbors are taken and a convex hull is created with them.  The convex hull represents a 
convex polyhedron that can be formed using the near neighbor points to the origin.  This 
polyhedron is referred to as the autocorrelation exclusion zone (AEZ) in Spatial Analysis 
3D.  The AEZ is a 3D representation of the dead zone that exists at the origin of any 
autocorrelogram.  The AEZ is consequently influenced strongly by single points that defy 
the exclusion zone and reside within the dead zone, and so it may differ significantly 
from the effective radius portrayed in the autocorrelation or inferred from the DRP. 
 
On the following page is a figure showing the AEZ for the autocorrelation data 
mentioned above in the example described under Autocorrelation Histogram.  From the 
figure we see that the AEZ looks spherical.  Just like the Voronoi domains, we can assign 
a direction vector, vaez, to the AEZ (see Voronoi Direction Vectors section).  This 
direction vector gives us an idea about the shape of the dead zone, that is, if it is 
elongated in a particular direction.  In this example, our direction vector vaez is <0.09, 
0.17, 0.0>, which tells us that the AEZ is in fact quite spherical. We can also take the 
volume of the AEZ and calculate the radius of the sphere with the equivalent volume; we 
call this the effective radius of the autocorrelation exclusion zone, raez.  In this example 
the effective radius, raez, of the AEZ is 25.78 µm, which happens to approximate well the 
effective radius derived from the DRP.  Again, real data sets that include exceptions to 
the exclusion zone defined by the majority of the population will yield marked 
discrepancies between the calculated ER and raez. 
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Help Menu 
 
Under the Help Menu you will find some helpful information regarding Spatial Analysis 
3D.  The menu items available are the Tip of the Day dialog box and the About Spatial 
Analysis window. 
 

Tip of the Day 
 
As noted in  Chapter 2: Getting Started, when Spatial Analysis 3D first starts, the Tip of 
the Day dialog box appears.  In this dialog box, you can scroll through all the tips 
available in the software.  If you do not wish to view the Tip of the Day dialog box each 
time Spatial Analysis 3D starts, simply uncheck the box in the bottom left hand corner of 
the dialog.  You can retrieve the dialog again by choosing Tip of the Day from the Help 
menu or under the General tab of the Options menu.  The figure below shows one 
example of a tip from the Tip of the Day dialog box. 
 
 

 
  
 
 

About Spatial Analysis 
 
The last item under the Help menu is the About Spatial Analysis menu item.  When 
selected, a figure window will appear that gives some basic information about Spatial 
Analysis 3D: the version, author, funding agency,  and website.  The website in the 
window is a hyperlink and can be used to check for updates.  The About Spatial Analysis 
window is shown as a figure on the following page. 
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Appendix A File Manifest 
 

Matlab fig files: 
AboutSpatialAnalysis.fig 
saveselectedparams.fig 
SAOptions.fig 

SpatialAnalysis.fig 
TipOfTheDay.fig 
viewdlg.fig

 
 

Matlab m files:
AboutSpatialAnalysis.m 
autocorrelation3.m 
filternnpoints.m 
nearestneighbor3.m 
polarf.m 
rosef.m 
saveparams.m 

saveselectedparams.m 
SAOptions.m 
SpatialAnalysis.m 
TipOfTheDay.m 
viewdlg.m 
Voronoianal3.m 

 

Matlab Mex files: 
ACCorrectionFactor3 
dmin3d 
f3d 
g3d 

k3d 
nnanalysis3 
pyramidarea 
pyramidvol 

 

C files:
func.h 
geom.h 
SpatialAnalysis3.h 
ACCorrectionFactor3.c 
DanVersionsphefrac.c 
dmin3d.c 
f3.c 
g3.c 
k3.c 

k3d_mex.c 
kfg_funs.c 
nnanalysis.c 
pyramidarea.c 
pyramidvol.c 
sint.c 
sphefrac.c 
sphevol.c 
tetraarea.c 

triarea.c 
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ACCORRECTIONFACTOR3. M 
 
ACCorrectionFactor3  Autocorrelation correction factor 
 
CF = ACCorrectionFactor3([X,Y,Z],[MINX,MINY,MINZ],[MAXX,MAXY,MAXZ],R) 
Calculates the correction factor for an autocorrelation calculation. 
The function calculates the fraction of a sphere with radius R centered 
at [X,Y,Z] that intersects a cube with one corner at [MINX,MINY,MINZ] 
and the opposite corner at [MAXX,MAXY,MAXZ].  The input variables are: 
 

[X,Y,Z]             Nx3 matrix of points 
[MINX,MINY,MINZ]    1x3 vector that defines one corner of the cube 
[MAXX,MAXY,MAXZ]    1x3 vector that defines the opposite corner 
R                   Mx1 vector that defines the radii 

 
The function will return an MxN matrix, CF, that has correction factors  
at each of the N points for each of the M radii. 
 
Be aware that erroneous results could occur if a radius R=0 is used. 
 
To compile this mex function in Windows, use the following: 
 
   mex -v ACCorrectionFactor3.c 
 
See also: AUTOCORRELATION3 
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AUTOCORRELATION3. M 
 
AUTOCORRELATION3  Calculates the autocorrelation in 3D 
 
[RBINS,COUNT] = AUTOCORRELATION3(P)  Performs an autocorrelation 
density recovery profile calculation on points P.  P is an M x 3 matrix 
that contains the (x,y,z) coordinates of M points.  The function 
returns radii of the bins used in the calculation and the count in each 
bin. 
 
[...] = AUTOCORRELATION3(P,OPTIONS)  Performs the calculation with the 
default parameters replaced by values in the structure OPTIONS.  The 
default parameters are given in {} 
 
options.MaxRadius          Max radius in the autocorrelation {1} 
options.NumBins            Number of bins in the autocorrelation {10} 
options.MinX               Min x boundary {0} 
options.MinY               Min y boundary {0} 
options.MinZ               Min z boundary {0} 
options.MaxX               Max x boundary {1} 
options.MaxY               Max y boundary {1} 
options.MaxZ               Max z boundary {1} 
options.WaitBar            Handle for the waitbar function {[]} 
options.AxesHandle         Handle for the axes to plot the data {[]} 
options.MarkerSize         Marker size to use in the plot {6} 
options.EdgeCorrection     Edge correction algorithm choices are: 
                           'fractional','none' {'fractional'} 
options.Filter             Filter to use on the points choices are: 
                           'convex hull','max radius','none' {'none'} 
 
[...,BINVOLUME,SAMPLEVOLUME,INDICES] = AUTOCORRELATION3(...)  Returns 
additional parameters: 
 
BINVOLUME               Volume of each bin in the calculation 
INDICES                 Indices of the points used in the calculation 
SAMPLEVOLUME            Volume of the sample space 
 
[...STATS] = AUTOCORRELATION3(...)  Returns a structure that contains 
some additional statistics regarding the autocorrelation 
 
STATS.reff              Effective radius of the dead space 
STATS.density           Density of the points in the sample space 
STATS.Dc                Critical density 
STATS.rm                Max radius 
STATS.k                 Reliability factor 
STATS.p                 Packing factor 
STATS.len               Number of points used in the calculation 
 
[...X,Y,Z] = AUTOCORRELATION3(...)  Returns the x,y,z data of ALL the 
points used when generating the autocorrelogram.  The number of points 
will be (N-1)^2 where N is the number of points that were used in the 
calculation. 
 
See also: NEARESTNEIGHBOR3, VORONOIANAL3, ACCORRECTIONFACTOR3 
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DMIN3D. M 
 
DMIN3D  Simulate Dmin rule in 3d 
 
[P,R,D] = DMIN3D(NPTS, BOX, DMIN); 
 
Input arguments: 
 

NPTS   number of points to generate. 
BOX    3-vector storing [wid height depth] of volume to simulate. 
DMIN   4-vector storing [mean sd lower upper] describing the 

parameters of the Normal distribution.  Random values outside 
the range of lower to upper are ignored.  lower is typically 
the soma size diameterr, and if upper is negative, there is 
no upper limit. 

 
Output arguments: 
 

P      [NPTS,3] matrix storing the simulated points. 
R      NPTS-vector storing the number of rejected  when positioning 

each cell.  
D      successful dmin value used for each point. 
I      extra information about the simulation.  I is a 2-d vector   

I[1] is the total number of rejects (= sum(r)) 
I[2] is an estimate of the packing density. 

 
If the simulation could not be made (beyond the packing density), 
P is set to -1.  (R and D store the values up to the point where 
the simulation was aborted.) 
 
Example: 
[p,r,d,i] = dmin3d(200, [300 300 300], [40, 5, 10, -1]); 
 
To compile this mex function in Windows, use the following: 
 
   mex -v dmin3d.c 
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F3D. M 
 
F3D  Compute F function in 3d. 
 
RES = F3D(PTS,BOX,RANGE,VSIZE,METHOD) Invokes the mex function kfg_funs 
to perform the F-function calculation with the following arguments: 
 
  PTS     array of size [N,3] where N is number of points. 
  BOX     vector of length 6 giving [XLO XHI YLO YHI ZLO ZHI] 
  RANGE   vector of length 3 [LO HI NVAL] saying the distances 
          at which F should be evaluated. 
  VSIZE   size of a voxel (See notes). 
  METHOD  integer:  
          0 (no correction) 
          1 (minus sampling). 
 
Return values: 
matrix RES with 2 columns and N rows, giving the distance r, and 
the value of the F function at that distance r. 
 
The F,G,K functions need compiled only once together.  To compile the 
mex function kfg_funs under windows use the following: 
 
  mex -v -g  kfg_funs.c sint.c f3.c g3.c k3.c sphefrac.c sphevol.c 
 
See also: G3D, K3D 
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FILTERNNPOINTS. M 
 
FILTERNNPOINTS  Filters the near neighbor points into classes 
 
NNCLASS = FILTERNNPOINTS(P,NNDIST,NNINDICES,MINX,MAXX,MINY,MAXY, 

 MINZ,MAXZ) 
 
Filters each point in P into classes based on the nearest neighbor 
distances and the sample space boundary locations.   
 
   P         M x 3 matrix that contains the (x,y,z) coordinates of M 
             points. 
   NNDIST    M X 1 Array of Nearest neighbor distances 
   NNINDEX   M x M matrix of 1's and 0's that indicates if a point is 
             a neighbor of another point 
   MINX      Minimum boundary in the x-direction 
   MAXX      Maximum boundary in the x-direction 
   MINY      Minimum boundary in the y-direction 
   MAXY      Maximum boundary in the y-direction 
   MINZ      Minimum boundary in the z-direction 
   MAXZ      Maximum boundary in the z-direction 
 
The function returns an M x 1 vector NNCLASS that specifies the class  
of the point 
   
   1     Normal point within the sample window 
   2     Point is double infected.  One of its near neighbors is 
         infected 
   3     Point is infected.  It is closer to any boundary than its 
         nearest neighbor. 
   4     Point is on the convex hull 
 
See also: NEARESTNEIGHBOR3 
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G3D. M 
 
G3D  Compute G function in 3d. 
 
RES = G3D(PTS,BOX,RANGE,METHOD) Invokes the mex function kfg_funs 
to perform the G-function calculation with the following arguments: 
 

PTS      array of size [N,3] where N is number of points. 
BOX      vector of length 6 giving [XLO XHI YLO YHI ZLO ZHI] 
RANGE    vector of length 3 [LO HI NVAL] saying the distances at 

which F should be evaluated. 
METHOD   integer:  

            1 (minus sampling). 
            3 (Hanisch G3). 
 
 
Return values: 
 
matrix RES with 2 columns and N rows, giving the distance r, and 
the value of the G function at that distance r. 
 
The F,G,K functions need compiled only once together.  To compile the 
mex function kfg_funs under windows use the following: 
 
  mex -v -g  kfg_funs.c sint.c f3.c g3.c k3.c sphefrac.c sphevol.c 
 
See also: F3D, K3D 
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K3D. M 
 
K3D  Compute K function in 3d. 
 
RES = K3D(PTS,BOX,RANGE,METHOD) Invokes the mex function kfg_funs 
to perform the K-function calculation with the following arguments: 
 
 

PTS      array of size [N,3] where N is number of points. 
BOX      vector of length 6 giving [XLO XHI YLO YHI ZLO ZHI] 
RANGE    vector of length 3 [LO HI NVAL] saying the distances at 

which F should be evaluated. 
METHOD   integer:  

            0 (translation) 
            1 (isotropic) 
 
 
Return values: 
 
matrix RES with 2 columns and NVAL rows, giving the distance r, and 
the value of the K function at that distance r. 
 
The F,G,K functions need compiled only once together.  To compile the 
mex function kfg_funs under windows use the following: 
 
  mex -v -g  kfg_funs.c sint.c f3.c g3.c k3.c sphefrac.c sphevol.c 
 
See also: F3D, G3D 
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NEARESTNEIGHBOR3. M 
 
NEARESTNEIGHBOR3 Calculates the nearest neighbor distances in 3D 
 
NND = NEARESTNEIGHBOR3(P) Calculates the nearest neighbor distances for 
each point in P.  P is an M x 3 matrix that contains the (x,y,z)  
coordinates of M points.  The function returns the nearest neighbor 
distances in an array that is Mx1 
 
[NND,MAXNNDIST,AVGNNDIST,NUMNN,NNINDICES,NNINDEX] = NEARESTNEIGHBOR3(P)  
Returns additional parameters: the maximum near neighbor distance,  
the average distance of the near neighbors, the number of near 
neighbors, the indicies of each near neighbor, and the index of the 
nearEST neighbor. 
 
[...,T,DELAUNAYSEGLEN,DELAUNAYAREA,DELAUNAYTOTALAREA,DELAUNAYVOL, 
SEGLENINDEX,FACETINDEX,NUMFACETS] =  NEARESTNEIGHBOR3(P)  Returns 
additional parameters for the delaunay tessellation. 
 
   T                   Delaunay tessellation matrix T 
   DELAUNAYSEGLEN      Delaunay segment lengths 
   DELAUNAYAREA        Delaunay facet areas 
   DELAUNAYTOTALAREA   Delaunay areas (for the tetrahedra) 
   DELAUNAYVOL         Delaunay volumes  
   SEGLENINDEX         Indices of the points that make up the segments 
   FACETINDEX          Indices of the points that make up the facetes 
   NUMFACETS           Number of facets for each point  
 
See also: NNANALYSIS3, AUTOCORRELATION3, DELAUNAY3 
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NNANALYSIS3. M 
 
NNANALYSIS3 Near Neighbor spatial analysis in 3D 
 
[SegLen,FacetArea,TotalArea,Vol,SegIndex,FacetIndex,NumFacets,MinNN, 
MaxNN,AvgNN,NumNN,NNIndices,NNIndex] = NNANALYSIS3(T,P) Performs a near 
neighbor analysis on points P.  P is an M x 3 matrix that contains the 
(x,y,z) coordinates of M points.  T is the Delaunay tessellation of 
those points, generated using the delaunay3 function.  The function 
returns several output arguments associated with the analysis 
 
 SegLen       Length of each connector for each tetrahedron (6 per) 
 FacetArea    Area of each facet for each tetrahedron (4 per) 
 TotalArea    Total surface area of each tetrahedron 
 Vol          Volume of each tetrahedron in the tessellation 
 SegIndex     Indices of the connectors for each tetrahedron 
 FacetIndex   Indices of the facets for each tetrahedron 
 NumFacets    Number of facets each point is associated with 
 MinNN        Minimum near neighbor distance 
 MaxNN        Maximum near neighbor distance 
 AvgNN        Average near neighbor distance 
 NumNN        Total number of near neighbors 
 NNIndices    Matrix containing the indices of each point's near                
              neighbors 
 NNIndex      Vector containing the index of the nearEST neighbor point 
 
Dan Lofgreen 12 March 2007 
 
To compile this mex function in Windows, use the following: 
 
   mex -v nnanalysis3.c triarea3.c tetraarea.c 
 
See also: DELAUNAY3, NEARESTNEIGHBOR3 
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PYRAMIDAREA. M 
 
PYRAMIDAREA Calculate area of a triangular pyramid 
 
[AREA,VECT] = PYRAMIDAREA(X,K,P)  Calculates the surface area and  
direction vector for each triangular pyramid in a delaunay tessellation  
or voronoi diagram.  The function accepts an Nx3 matrix, X, of 
vertices, where the first column is the x coordinates, the second y 
corrdinates and the third the z coordinates.  An Mx3 matrix, K, of 
indices into X. These represent the 3 points that make up the base of 
the pyramid.  Finally a 1x3 vector, P, that has the [x,y,z] coordinates 
of the point of interest, or the apex of the pyramid. 
 
The function returns an Mx1 vector, AREA, that is the area of the base  
of each pyramid.  The function also returns an Mx3 vector, VECT, that 
is the sum of the 3 vectors from the apex to each point on the base of 
the pyramid.  The resultant vectors are not normalized. 
  
To compile this mex function in Windows, use the following: 
 
   mex -v pyramidarea.c triarea3.c 
 
See also CONVHULLN, PYRAMIDVOL 
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PYRAMIDVOL. M 
 
PYRAMIDVOL Calculate volume of a triangular pyramid 
 
[VOL,A] = PYRAMIDVOL(X,K,P)  Calculates the surface area and volume 
for each triangular pyramid in a delaunay tessellation or voronoi 
diagram.  The function accepts an Nx3 matrix, X, of vertices, where the 
first column is the x coordinates, the second y corrdinates and the 
third the z coordinates.  An Mx3 matrix, K, of indices into X.  These 
represent the 3 points that make up the base of the pyramid.  Finally a 
1x3 vector, P, that has the [x,y,z] coordinates of the point of 
interest, or the apex of the pyramid. 
 
The function returns an Mx1 vector, VOL, that is the volume of each 
pyramid defined by K.  The function also returns an Mx1 vector, A, that  
is the area of the base of each pyramid. 
 
The volume of a triangular pyramid is 1/3 * Abase * height 
 
To compile this mex function in Windows, use the following: 
   mex -v pyramidvol.c triarea3 
 
See also CONVHULLN, PYRAMIDAREA 
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SAOPTIONS. M 
 
SAOPTIONS Control code for the Spatial Analysis Options Window 
 
SAOptions by itself will create a new SAOptions window with the default 
values loaded into each uicontrol.  SAOptions is always created as a 
modal window, so it must be closed in order to continue. 
 
SAOptions(options)  Creates a new SAOptions window and loads the values 
specified in options into the appropriate uicontrol.  Options is a 
structure with field names equal to the Tag name of the uicontrol. 
 
See also: SPATIALANALYSIS 
 
options.MinX Sample space min X 
options.MaxX Sample space max X 
options.MinY Sample space min Y 
options.MaxY Sample space max Y 
options.MinZ Sample space min Z 
options.MaxZ Sample space max Z 
options.MarkerSize Marker size for the plots 
options.Precision Decimal precision for the table 
options.Transparency Facet transparency 
options.Units Units for the plots and table 
 
options.NumNNBins Number of nearest neighbor bins 
options.NNBinSize  Nearest neighbor bin size 
options.NumDelaunaySegLenBins Number of Delaunay seg. length bins 
options.DelaunaySegLenBinSize Delaunay segment length bin size 
options.NumDelaunayAreaBins Number of Delaunay facet area bins 
options.DelaunayAreaBinSize Delaunay facet area bin size 
options.NumDelaunayVolBins Number of Delaunay volume bins 
options.DelaunayVolBinSize Delaunay volume bin size 
options.NNFilter Delaunay point filter 
  
options.NumVoronoiVolBins Number of Voronoi volume bins 
options.VoronoiVolBinSize Voronoi volume bin size 
options.NumVoronoiAreaBins Number of Voronoi area bins 
options.VoronoiAreaBinSize Voronoi area bin size 
options.VoronoiFilter Voronoi point filter 
  
options.NumACBins Number of autocorrelation(AC) bins 
options.MaxRadiusAC Max radius in the autocorrelation 
options.MarkerSizeAC Markersize for the AC plot 
options.EdgeCorrectionAC  Type of edge correction for the AC 
options.FilterAC  Point filter for the AC 
options.PLOTAC FLAG for plotting the AC 
  
options.fdivisions Divisions in the F-function (voxel) 
options.FfcnRange F-function range 
options.FfcnNumPoints Number of points in the F-function 
options.GfcnRange G-function range 
options.GfcnNumPoints Number of points in the G-function 
options.KFcnRange  K-function range 
options.KfcnNumPoints Number of points in the K-function 
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options.NumRandPoints  Number of simulated data points 
options.RandomAvgDist Average distance (dmin) 
options.RandomMinDist Min acceptable distance for dmin 
options.RandomSTD Standard deviation for dmin 
options.SimulatedDataType Type of simulated data 
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SPATIALANALYSIS. M 
 
SPATIALANALYSIS 3D Spatial Analysis software 
 
SpatialAnalysis will start the Spatial Analysis 3D software.  The 
softare must first be installed to use it. 
 
SpatialAnalysis -setup  Will set up the SpatialAnalysis software.  The 
setup feature will initialize some application preferences and compile 
the C routines into Matlab mex functions 
 
See also: INSTALLSPATIALANALYSIS, ABOUTSPATIALANALYSIS, 
NEARESTNEIGHBOR3, AUTOCORRELATION3, VORONOIANAL3, F3D, G3D, K3D 
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VORONOIANAL3. M 
 
VORONOIANAL3 Voronoi diagram analysis in 3D 
 
[AREA,VOLUME] = VORONOIANAL3(P) Performs a Voronoi diagram analysis in 
for each point in P.  P is an M x 3 matrix that contains the (x,y,z)  
coordinates of M points.  The function returns the surface area and 
volume of each Voronoi diagram in AREA and VOLUME respectively. 
 
[AREA,VOLUME,V,C,K,CONVHI] = VORONOIANAL3(P)  Returns additional  
parameters: 

 
V Voronoi vertices  
C Voronoi cells C  
K Cell array of Voronoi indicies for each point 
CONVHI Convex hull indices 
 

[AREA,VOLUME,V,C,K,CONVHI,VCLASS] = VORONOIANAL3(P,OPTIONS) Returns  
additional parameters based on a user-defined options structure 
 

options.MinX Min x value in the sample window 
options.MaxX Max x value in the sample window 
options.MinY Min y value in the sample window 
options.MaxY Max y value in the sample window 
options.MinZ Min z value in the sample window 
options.MaxZ Max z value in the sample window 

 
VCLASS is an array of length M that specifies the class of Voronoi 
diagram 
 

1 Normal point within the sample window 
2 Point is on the convex hull 
3 The point is infected 
4 convhulln had an error during the analysis 

 
See also: VORONOIN, NEARESTNEIGHBOR3, AUTOCORRELATION3 
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 FIG FILES 
 
A FIG-file, with extension .fig, contains a complete description of the GUI layout and the 
components of the GUI: push buttons, menus, axes, and so on. 
 
AboutSpatialAnalysis.fig 
 
Contains the GUI layout for the About Spatial Analysis that can be found in the Help 
menu of the Spatial Analysis program. 
 
saveselectedparams.fig 
 
Contains the GUI layout for the Save Selected Parameters dialog box.   
 
SAOptions.fig 
 
Contains the GUI layout for the options window of the Spatial Analysis program. 
 
SpatialAnalysis.fig 
 
Contains the GUI layout for the main program, Spatial Analysis. 
 
TipOfTheDay.fig 
 
Contains the GUI layout for the Tip of the Day dialog box for the Spatial Analysis 
program. 
 
viewdlg.fig 
 
Contains the GUI layout for the view dialog box.  The view dialog allows the user to 
change the elevation and azimuth angles.
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